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Talk summary

e Overview of the Overture framework, current projects.
e AMR on overlapping grids, existing capabilities.
e Some sample denonation computations.

e Current work: three-dimensions, moving geometry and AMR, parallel
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Solutions coupled by interpolation
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Sample 3D overlapping grids
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Overture supports a high-level C+4+ interface (but is built
mainly upon Fortran kernels):

Solve u; + aug + buy = V(Uyy + Uyy)

// create a composite grid
getFromADataBaseFile(cg, "myGrid.hdf");

// create a grid function

// operators

u.setOperators(op) ;

float t=0, dt=.005, a=1., b=1., nu=.1;

for( int step=0; step<100; step++ )

{
ut=dt*( -a*u.x()-b*u.y()+nu*x(u.xx(O)+u.yy()) ); // forward Euler
t+=dt;
u.interpolate();
u.applyBoundaryCondition(0,dirichlet,allBoundaries,0.);

u.finishBoundaryConditions() ;




Current Projects with Overture

<> Hybrid (unstructured) grid generation and algorithms (Kyle Chand)
the overlap region is replaced by an unstructured grid (advancing front algorithm).
a stabilized DSI scheme for Maxwell’'s equations on hybrid grids.

> Deforming boundaries in incompressible flow (Petri Fast).
<> Multigrid solvers for elliptic problems on overlapping grids.

robust coarsening and adaptive smoothing techniques.

second- and fourth-order accurate, Dirichlet and Neumann boundary conditions.
> Incompressible Navier-Stokes solvers for overlapping grids.

fourth-order accurate time accurate solver.

line-implicit pseudo-steady state solver.
> High speed reactive flow and adaptive mesh refinement (with Don Schwendeman (RPI))
<> An overlapping grid solver for the time dependent Maxwell's equations.

fourth-order accurate, parallel




CAD toMesh to Solution with Overture
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Global triangulation

Incompressible flow.
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Incompressible flow computations with OverBlown.




for ka = 1/2.
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Bottom: scattered field E;, Ey and H. for ka = 5/2
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Scattering of a plane wave by a cylinder. Top: scattered field £, Ey; and H




Block structured Adaptive Mesh Refinement

¢ Initially developed by Berger and Oliger (JCP 1984)

{» Extensions to the Euler equations by Berger and Colella (JCP 1989)

¢ AMR and overlapping grids considered by Brislawn, Brown, Chesshire and Saltzman
(1995), and Boden and Toro (1997)

< AMR in Overture has contributions from Brown, Philip and Quinlan.
Some Structured AMR frameworks

& AMRCLAW (LeVeque and Berger)

& Amrita (Quirk)

> Boxlib (Bell et.al., LBNL)

¢» Chombo (Colella et.al., LBNL)

¢ GrACE (Parashar)

¢ PARAMESH (NASA Goddard Space Flight Center)

¢ SAMRAI (Hornung et.al. LLNL)

Reference Tomasz Plewa’'s AMR page http://flash.uchicago.edu/~tomek/AMR




AMR on overlapping grids

Currently adding AMR capabilities to Overture for overlapping grids.

Some of the issues that need to be addressed
e multiple base grids.
efficient handling of refinement grids on curvilinear grids.
support for higher order accurate methods (fourth-order, sixth-order,...)
updating refinement grids that meet at the overlapping grid boundaries.
retaining the efficiency of cartesian grids.

saving and reading solutions and grids from a data base file in an efficient
manner (e.g. for post-processing and restarts).

graphics.




AMR regridding algorithm (Berger-Rigoutsos)

box is split into two

/ \
tagged cells initial box process is repeated

(1) tag cells where refinement is needed

(2) create a box to enclose tagged cells

(3) split the box along its long direction based on a histogram of tagged cells
(4) fit new boxes to each split box and repeat the steps as needed.
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Components of an Overlapping Grid

e » interpolation

o upused .
4 » ghost point

physical boundary

bc(2,2)
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Adaptive overlapping grids
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Ovelrllapping Grids and AMR

Component grid 1,

base grid 1

Refinement grids

/

interpolate from

refinements of a different

base grid

Component grid 2,

base grid 2 \




The basic AMR time stepping algorithm

PDEsolve(G, tgnal)
{

t:=0; n:=0;
ul := applylnitialCondition(G);
while ¢ < tg,,)
if (n mod Nyegria == 0)
ej := estimateError (G, uf’);
G* :=regrid (G, e;);
uf := interpolateToNewGrid(uf, G, G*);
G :=G%; uy :=uf;

end

At := computeTimeStep(G, ul’);
u?—H := timeStep(G, u, At);
t:=t+ At; n:=n-+1;
interpolate(G, ul’);

applyBoundaryConditions(G, ul’, t);




The basic components of AMR in Overture

Error estimation

e standard error estimators based on first and second differences.

e smoothing of the error and propagation across overlapping grid boundaries.
Regridding

e generation of aligned AMR grids using the Berger-Rigoutsos algorithm.

e Boxlib is used for domain calculus (e.g. intersecting two boxes).

e updating the overlapping grid interpolation points on AMR refinement grids.
Interpolation

e fine to coarse and coarse to fine interpolation

e support for any refinement ratio (1,2,3,4,...) and any order of accuracy.

e high level functions to interpolate the solution from one AMR overlapping
grid to another AMR overlapping grid.

e functions to update all AMR ghost points and hidden coarse grid points on
an AMR overlapping grid.




AMR on overlapping grids - high-level objects

Grids and solutions on the overlapping grid AMR hierarchy are represented as

CompositeGrid cg; // (derived from a GridCollection)
realCompositeGridFunction u(cg,all,all,all,3); // (3 components)

Individual grids can be accessed as

MappedGrid & mg = cglgrid];
realMappedGridFunction & umg = ul[grid];

All grids on a refinement level can be accessed as

GridCollection & rl = cg.refinementLevel[level];

realGridCollectionFunction & url = u.refinementLevel[level];




amrHype: Solve a convection diffusion equation with AMR

e a small code demonstrating the use of AMR with Overture.
e uses the method of analytic solutions for testing accuracy.
Sample uses of Overture AMR functions:

CompositeGrid cg,cgNew;
realCompositeGridFunction u,error,uNew;
ErrorEstimator errorEstimator;
errorEstimator. computeAndSmoothErrorFunction (u,error) ;
Regrid regrid;
regrid.regrid(cg,cgNew, error, errorThreshold );
Ogen ogen;
ogen.updateRefinement (cgNew) ;
uNew.updateToMatchGrid (cgNew) ;
InterpolateRefinements interp;

interp.interpolateRefinements ( u,uNew );




Testing using the method of analytic solutions

The usefulness of this technique cannot be overstated.

Given a PDE boundary value problem
L(ut, Uy, Uy, ...) = F(x,1)
one can create an exact solution, U(x,t) by choosing
F(x,t) = L(U:, Uz, Uy, . ..)

The Overture OGFunction class defines a variety of exact solutions and their
derivatives to support the method of analytic solutions. For example one could define a
polynomial, trigonometric polynomial, or pulse function

1 1
t) = (z° 4+ 2zy +y° + 2°)(1 + it - §t2)

U(x,t) = cos(mwz) cos(rwy) cos(mwz) cos(wsmt)
U(x,t) = ao exp(—a1[x = b(®)[|*") , b(t) = co + vt
The polynomial solution is particularly useful since this solution is often an exact

solution to the discrete equations on rectangular grids. The pulse function is good for
AMR.




amrHype: Solve a convection diffusion equation with AMR

U t=5.00e-01, dt=378e—-03, nu=1.00e—02, onu=0.00e+00 U t=1.50e+00, di=3.77e—-03, nu=1.00e—-02, anu=0.00e+00

Traveling pulse analytic solution




High Speed Reactive Flow Project

> Develop software tools for the numerical solution of the reactive Euler equations with a

general equation of state and various reaction rate models.
AMR to resolve shocks/detonations with numerical efficiency
Sub-CFL time step resolution for fast chemical reactions
Overlapping grids to handle complex two- and three-dimensional geometries.
Parallel processing (in progress)
> Study detonation dynamics in homogeneous and heterogeneous explosives. For example:

Explore paths to detonation of reactive samples at critical conditions subjext to small

initial non-uniformities

Explore detonation/confinement interactions with applications to detonation
diffraction and failure

> explore features and limitations of existing models (e.g. ignition-and-growth), and explore

new models (e.g. multiphase)

> Reference An Adaptive Numerical Scheme for High-Speed Reactive Flow on Owverlapping
Grids, JCP vol. 191, 2003.




Numerical Method

Summary:

<> Domain is covered by a collection of overlapping curvilinear grids.

> Solution is advanced in time on each component grid according to a second-order accurate,
shock-capturing, Godunov-type scheme.

> Source term is handled with an error-control algorithm allowing sub-CFL time step resolution

> Interpolation is used near the overlap boundaries to communicate the solution between
component grids.

> AMR is used to resolve the fine-scale structures.

i HEH RKIF R

A sample overlapping grid consisting of an inlet grid,
a background grid and a




Reactive Euler Equations

Governing equations (2-D):
u; + f(u)z +g(u)y = h(u)

where
pU pv

pu® +p
pUv

u(pE + p)
PU

PUA

Variables:
p = density (u,v) = velocity
p = pressure E = total energy

A = n mass fractions R = n reaction rates

1
E=e+ §(u2—|—v2)

internal energy per unit mass

€ — e(p7 p7 A) —
(as specified by an equation of state)




Reaction and equation-of-state models

One-step:

kc B 1/ 1 1
F — P, kc—aexp(€<TC T)>

Variables:
F = fuel P = product
T = temperature, = p/p Tc = cross-over temperature
o = prefactor (sets time scale) e = reciprocal activation energy, < 1

Reaction rate:
R=(1—-Xkc, X = mass fraction of product

Equation of state:

e=—L _ 1AQ

(vy—=1)p

~ = ratio of specific heats

@ = heat release < 0 (exothermic)




Chain-Branching: (Kapila)

kr = o exp (i )) (initiation)

€r

1 1 1

kp = oexp (;<E — ?)> (branching)

kc =1 (sets time scale) (completion)

F,Y, P = fuel, radical, product
Tr,Ts = cross-over temperatures

€r, €eg = reciprocal activation energies
Reaction rates:
R1 = Xoko, (1 — Nk, A1 = mass fraction of product
Ro = (1= X1 — X2)(kr + X2kp) — Aakc, A2 = mass fraction of radical

Ideal equation of state:

e= P2 + A Q1 + A2Q2
(v—=1p

where

Q1, Q2 = heat release to form product (< 0) and radical (> 0)




Ignition and Growth reaction model (Lee and Tarver, 1980)

F(solid) — P(gas)

Reaction rate: (hot spots)
R:kI—I—kgl —I—kG2

where
kr =I1(1 —X\)° (max{p —1—a,0})® if A< A; (ignition)
kg, = G1(1 — \)°X\%pY if A\ < Ag, (rapid growth)
kg, = G2(1 — X)°A9p® if A > Ag, (slow growth)

Mixture JWL equation of state:

1
e=(1—XNes+Aeg, —=(1—XNvs+ vy
p

PsUs
Ws

__ PgYg
Wg

— FS(‘US) +Q es=0CTs + Gs(vs) +Q

— Fy(vg) eg = CgTy + Gg(vg)

Closure conditions: ps = pg and Ts =T




Detonation Formation
Geometry: quarter plane z > 0, y > 0

Reaction/EQOS: one-step/ideal with

€

y=14, Tc=1, e=.075, Q=—-4, o=
(v-1Q

Initial conditions: prescribed temperature gradient

u=v=A=0, p=1, T=1—5\/:1:2—i—y2, o = .0375

Boundary conditions: solid wallson z =0, y =0
Base grid: 400 x 400 grid cells for the domain 0 <z <2, 0 <y < 2

AMR: 2 child grid levels, refinement factor=4
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Detonation in a Quarter Plane

Single Base Grid

Overlapping Grid




Detonation in a Quarter Plane
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Detonation Entering the Annulus Grid

Temperature, t = 1.75 - 2.7 Pressure, t = 1.75

Figure 1. Behavior of the temperature and the AMR grid at ¢t = 1.75 for a two-
dimensional calculation on a rectangular base grid with an embedded annular grid.




Overlapping Grid vs Single Base Grid Results
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Figure 2: Behavior of the temperature (a) and pressure (b) along y = 0 in the vicinity of
the detonation at £ = 1.8. The red curves are from the grid with the embedded annulus

and the black curves are from the rectangular grid with no annulus.




Detonation Diffraction

Geometry: smooth expanding channel

5 T T

Reaction /EOS: chain-branching/ideal with
TI = 3, TB == 0.75, €] — 0.05, €EB — 0.125, Y = 1.4, Ql = —1, QQ =0

Initial conditions: steady over-driven detonation.
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AMR: 2 child grid levels, refinement factor=4




Detonation in an Expanding Channel.
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Temperature, t = 3 : Temperature, t = 5

Radical fraction y, t =5
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Temperature, t = 10
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Figure 3: Closeup of the density near the Mach stem. The boundaries of the

refinement grids are shown.




AMR performance on two detonation problems:

Quarter plane Expanding channel
time steps 12,418 21,030
grids (min,ave,max) (2,57,353) (5,274, 588)
points (min,ave,max) | (2.0e5,9.2e5,1.9e6) || (1.2e5,6.4e5,1.3e6)
s/step % s/step %

boundary conditions 12 : .14 1.0
interpolation (overlapping) .09 : .45 3.2
AMR regrid/interpolation .54
other 34 . .25 1.8

total

Table 1: CPU time (in seconds) per step for various parts of the code and their
percentage of the total CPU time per step.




Current work: three-dimensions

| Fuler rho
t=0.400, dt=3.33e—-03

Euler
0.700, dt=8.3Fe—04

Shock hitting a sphere (Euler Sphere moving in a tube
° 9P ( ) P with AM Rg(Euler)




Current work: moving geometry
> The governing equations are written in the moving coordinate system

> Support for (1) specified motion, (2) rigid-body motion with forces and
torques determined from the flow.

> The grids are moved at every time step and the interpolation points are

recomputed.

Moving valves (INS) Falling cylinders (INS) Rotating body (INS)




Current work: moving geometry and AMR

> Refinement grids move with the corresponding base grid.

» The AMR regrid step is performed at the start of the step, followed by the
grid movement.

Moving cylinders (Euler) Cylinder moved by a shock (Euler)




Current work: A parallel version of the flow solver OverBlown

> Grids can be distributed across one or more processors.
{> Distributed parallel arrays using P++ (K. Brislawn, B. Miller, D. Quinlan)

{ P++ uses Multiblock PARTI (A. Sussman, G. Agrawal, J. Saltz) for block
structured communication with MPI (ghost boundary updates, copies
between different distributed arrays)

> A special parallel overlapping grid interpolation routine has been written.

NP | sec/step | ratio

1 8.4 1.
2 4.3 2.

Table 2: Shock hitting a cylinder (no AMR), 1.1 million grid-points, Dell worksta-
tion 2.2GHz Xeon.




P++ : parallel multi-dimensional arrays

realDistributedArray u

4 processors
Partitioning_Type partition; // object that defines the parallel distribution
partition.SpecifylnternalGhostBoundaryWidths(1,1);
realDistributedArray u(100,100,partition); // build a distributed array
u=>bh.;
realSerialArray & ulocal = u.getLocalArray(); // access the local array
myFortranRoutine(*ulLocal.getDataPointer(),...);
u.updateGhostBoundaries();




Overture and OverBlown are available for download,

www.lInl.gov/CASC/Overture.html




